54 research outputs found

    Reservoir sedimentation in the Demirköprü Dam, Turkey

    Get PDF
    River morphodynamics and sediment transportSedimentation in reservoir

    How much noise can be added in cardiac X-ray imaging without loss in perceived image quality?

    Get PDF
    Dynamic X-ray imaging systems are used for interventional cardiac procedures to treat coronary heart disease. X-ray settings are controlled automatically by specially-designed X-ray dose control mechanisms whose role is to ensure an adequate level of image quality is maintained with an acceptable radiation dose to the patient. Current commonplace dose control designs quantify image quality by performing a simple technical measurement directly from the image. However, the utility of cardiac X-ray images is in their interpretation by a cardiologist during an interventional procedure, rather than in a technical measurement. With the long term goal of devising a clinically-relevant image quality metric for an intelligent dose control system, we aim to investigate the relationship of image noise with clinical professionals’ perception of dynamic image sequences. Computer-generated noise was added, in incremental amounts, to angiograms of five different patients selected to represent the range of adult cardiac patient sizes. A two alternative forced choice staircase experiment was used to determine the amount of noise which can be added to a patient image sequences without changing image quality as perceived by clinical professionals. Twenty-five viewing sessions (five for each patient) were completed by thirteen observers. Results demonstrated scope to increase the noise of cardiac X-ray images by up to 21% ± 8% before it is noticeable by clinical professionals. This indicates a potential for 21% radiation dose reduction since X-ray image noise and radiation dose are directly related; this would be beneficial to both patients and personnel

    Selecting stimuli parameters for video quality studies based on perceptual similarity distances

    Get PDF
    This work presents a methodology to optimize the selection of multiple parameter levels of an image acquisition, degradation, or post-processing process applied to stimuli intended to be used in a subjective image or video quality assessment (QA) study. It is known that processing parameters (e.g. compression bit-rate) or technical quality measures (e.g. peak signal-to-noise ratio, PSNR) are often non-linearly related to human quality judgment, and the model of either relationship may not be known in advance. Using these approaches to select parameter levels may lead to an inaccurate estimate of the relationship between the parameter and subjective quality judgments – the system’s quality model. To overcome this, we propose a method for modeling the relationship between parameter levels and perceived quality distances using a paired comparison parameter selection procedure in which subjects judge the perceived similarity in quality. Our goal is to enable the selection of evenly sampled parameter levels within the considered quality range for use in a subjective QA study. This approach is tested on two applications: (1) selection of compression levels for laparoscopic surgery video QA study, and (2) selection of dose levels for an interventional X-ray QA study. Subjective scores, obtained from the follow-up single stimulus QA experiments conducted with expert subjects who evaluated the selected bit-rates and dose levels, were roughly equidistant in the perceptual quality space - as intended. These results suggest that a similarity judgment task can help select parameter values corresponding to desired subjective quality levels

    How much image noise can be added in cardiac x-ray imaging without loss in perceived image quality?

    Get PDF
    YesCardiologists use x-ray image sequences of the moving heart acquired in real-time to diagnose and treat cardiac patients. The amount of radiation used is proportional to image quality; however, exposure to radiation is damaging to patients and personnel. The amount by which radiation dose can be reduced without compromising patient care was determined. For five patient image sequences, increments of computer-generated quantum noise (white + colored) were added to the images, frame by frame using pixel-to-pixel addition, to simulate corresponding increments of dose reduction. The noise adding software was calibrated for settings used in cardiac procedures, and validated using standard objective and subjective image quality measurements. The degraded images were viewed next to corresponding original (not degraded) images in a two-alternativeforced- choice staircase psychophysics experiment. Seven cardiologists and five radiographers selected their preferred image based on visualization of the coronary arteries. The point of subjective equality, i.e., level of degradation where the observer could not perceive a difference between the original and degraded images, was calculated; for all patients the median was 33% 15% dose reduction. This demonstrates that a 33% 15% increase in image noise is feasible without being perceived, indicating potential for 33% 15% dose reduction without compromising patient care.Funded in part by Philips Healthcare, the Netherlands. Part of this work has been performed in the project PANORAMA, co-funded by grants from Belgium, Italy, France, the Netherlands, and the United Kingdom, and the ENIAC Joint Undertaking

    Time interval between self-expandable metal stent placement or creation of a decompressing stoma and elective resection of left-sided obstructive colon cancer

    Get PDF
    Background The optimal timing of resection after decompression of left-sided obstructive colon cancer is unknown. Revised expert-based guideline recommendations have shifted from an interval of 5-10 days to approximately 2 weeks following self-expandable metal stent (SEMS) placement, and recommendations after decompressing stoma are lacking. We aimed to evaluate the recommended bridging intervals after SEMS and explore the timing of resection after decompressing stoma.Methods This nationwide study included patients registered between 2009 and 2016 in the prospective, mandatory Dutch ColoRectal Audit. Additional data were collected through patient records in 75 hospitals. Only patients who underwent either SEMS placement or decompressing stoma as a bridge to surgery were selected. Technical SEMS failure and unsuccessful decompression within 48 hours were exclusion criteria.Results 510 patients were included (182 SEMS, 328 decompressing stoma). Median bridging interval was 23 days (interquartile range [IQR] 13-31) for SEMS and 36 days (IQR 22-65) for decompressing stoma. Following SEMS placement, no significant differences in post-resection complications, hospital stay, or laparoscopic resections were observed with resection after 11-17 days compared with 5-10 days. Of SEMS-related complications, 48% occurred in patients operated on beyond 17 days. Compared with resection within 14 days, an interval of 14-28 days following decompressing stoma resulted in significantly more laparoscopic resections, more primary anastomoses, and shorter hospital stays. No impact of bridging interval on mortality, disease-free survival, or overall survival was demonstrated.Conclusions Based on an overview of the data with balancing of surgical outcomes and timing of adverse events, a bridging interval of approximately 2 weeks seems appropriate after SEMS placement, while waiting 2-4 weeks after decompressing stoma further optimizes surgical conditions for laparoscopic resection with restoration of bowel continuity.Cellular mechanisms in basic and clinical gastroenterology and hepatolog
    • …
    corecore